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Introduction 

Efficient and successful mosquito control is often dependent on the ability of 
agencies to identify larval habitat and then to distinguish between high- and low- 
producing habitats in a timely manner. Typically, ground survey techniques, 
which involve extensive field work and intensive manual labor, are impractical 
over large areas due to time and financial constraints. One approach to regional 
surveillance of larval habitats is to use remote sensing data to assess vegetation 
parameters associated with high larval-producing habitats. Early studies of 
mosquito habitats using remotely sensed data primarily focused on identifying 
and mapping aquatic environments to assess the spatial distribution of potential 
larval habitat (Barnes & Cibula, 1979; Hayes et al., 1985; Welsh ef al., 1989). In 1985, 
the National Aeronautics and Space Administration (NASA) initiated a project 
called the Biospheric Monitoring and Disease Prediction Project (Di-Mod), whose 
goal was to determine if remotely sensed data could be used to identify and 
monitor environmental parameters that influence malaria vector populations, and 
therefore disease transmission risk (NASA, 1988). 

Background 

Remote sensing. All objects on the earth's surface transmit, reflect, and/or absorb 
electromagnetic (EM) energy from the sun, and each object does so differently 
depending on its physical properties. In the visible portion of the EM spectrum, 
where our eyes perceive objects, leaf pigments in a healthy green leaf absorb 
energy in the red wavelengths and reflect energy in the green; that's why plants 
appear to be green. Beyond the visible wavelengths, in the infrared portion of the 
spectrum, green leaves have a very characteristic reflectance response that we can't 
see. In the near-infrared, the internal structure of a plant's leaf results in very high 
reflectance of EM energy, and in the mid-infrared, the water content of a leaf 
affects its reflectance. A plant's spectral response in the visible, near-, and mid- 
infrared wavelengths of the EM spectrum, called its "spectral curve" (Figure l), will 
depend on the type and condition of the plant itself, as well as the angle of the 
sunk rays hitting the object, atmospheric conditions, topographic position, and so 
forth. 

The spectral curves of vegetation, and of other objects on the earth's surface, can be 
detected and measured using special instruments that have been designed to 
record reflectance in specific wavelengths. These instruments, called sensors, can 
function in wavelengths beyond those we can detect with our own eyes, enabling 
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us to "see" unique reflectance properties of plants and other objects. These unique 
properties help us to then distinguish objects that may look similar to our eyes, 
and to map the distribution of objects more accurately. For example, remote 
sensing was used during World War II to distinguish healthy, growing vegetation 
from vegetation that had been cut for camouflaging military targets. These cut 
branches still appeared to be green to the human eye, but, due to moisture stress 
and other leaf damage, the branches reflected EM energy very differently in the 
near-infrared portion of the spectrum. Special film that could record differences in 
near-infrared reflectance was developed and used to locate these targets based on 
their anomalous reflectance patterns. This phenomenon, called "pre-visual stress," 
is now exploited to map the distribution of diseased or stressed crops and forests 
whose damaged internal leaf structure has yet to affect their reflectance patterns in 
the visible wavelengths. 

In figure 1, note how a healthy green leaf reflects energy in the green, absorbs in 
the red, and highly reflects in the near-infrared. When leaves senesce and die, this 
curve changes significantly: a dying leaf will reflect less energy in the green, more 
in the red (causing the leaf to look brown), and less in the near-infrared. Also 
shown in hgure 1 are typical reflectance curves for water, which absorbs energy in 
both the visible and near-infrared, and for dry soil, which reflects more energy 
than plants in the visible and less energy in the near-infrared. Because the soil is 
dry, it reflects more energy in the mid-infrared than moist, green leaves. These 
spectral curves represent average reflectance responses; the curves themselves 
depend on many physical factors. For example, reflectance from water will 
depend on the amount of sediment it contains, as well as its chemical content, its 
surface roughness+and&-&pth-SoiLreflectance_ is affected-by-soil type,-color, 
topographic position, and moisture content. 

Vegetation reflectance is associated with such factors as species type, growth stage, 
plant condition (health), leaf water content, canopy structure, plant density, and 
leaf angle. Knowledge of how these and other variables affect vegetation 
reflectance has enabled RS technology to be used in agricultural applications to 
perform crop type classification, crop condition assessment, and crop yield 
estimation. For crop type classification, spectral response patterns and canopy 
texture are used to distinguish between such crops as corn, soybeans, small grains, 
etc., and to generate area inventories. To facilitate classification, analysts use crop 
calendars, which provide spectral information on the seasonal changes in a crop's 
reflectanck pattern. Because of seasonal changes in reflectance, classification 
usually requires multiple dates of RS data. For crop condition assessment, the 
analyst utilizes pre-visual spectral responses (previously described) and visible 
reflectance to detect vegetation affected by disease, water stress, insect damage, 
differences in fertilizer application, etc. If the analyst knows the typical yield of a 
crop per unit area, this information can be used to estimate crop yield by 
multiplying the yield by the area under cultivation, as mapped using RS data. 
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As part of both crop type classification and crop condition assessment, analysts use 
RS data to estimate vegetation "greenness." This measurement is derived from the 
ratio between the crop's simultaneous spectral reflectance in the red and the near- 
infrared portions of the spectrum. Recall that healthy green leaves absorb energy 
in the red and highly reflect in the near-infrared (Figure 1). In general, the larger 
the differince between these two simultaneously measured spectral responses, the 
greener the plant. This chapter will discuss how vegetation greenness from RS 
data were used to assess rice development stage, an important variable for 
predicting anopheline larval abundance in California rice fields. 

Remote sensing and Anopheles freeborni lnrval habitat. Most anopheline larval 
habitats are highly localized, and can occur where temperature, humidity, 
precipitation, elevation, vegetation, and water quality are suitable. In California, 
the western malaria mosquito, Anophelesfreeborni, is unevenly distributed 
throughout a variety of wetlands, but is most commonly found in the nearly 
240,000 hectares of irrigated rice grown in the Central Valley (Figure 2). The 
biology of this mosquito has been intensively studied (Markos, 1951; Markos and 
Sherman, 1957; Bailey and Gieke, 1968; Washino, 1980). These studies indicate that 
An. fueeborni larval abundance may be influenced by several factors, including rice 
field location, density of the initial mosquito infestation, plant density, and plant 
growth rate. Of particular interest for mosquito control purposes is that these 
studies have also shown that not all rice fields produce large numbers of 
mosquitoes. 

Remote se'nsing data have been used to measure green-leaf area of rice (Martin & 
Heilman, 1986) and to estimate rice yields (Pate1 et nl., 1991). Studies conducted in 
California have demonstrated that airborne and satellite multispectral data can be 
used to identify and monitor rice field vegetation development (Wall et id.,  1980; 
Hlavka and Sheffner, 1988). At the beginning of our experiments, it was known 
that the spatial and temporal dynamics of An. freeborni larval populations 
appeared to be related to rice field location and vegetation development 
characteristics, both of which could be monitored using RS data. What was not 
known was if RS data could be used to distinguish between high- and low- 
producing larval rice fields for the purpose of directing control measures. This 
question was the focus of two related experiments, which will now be discussed. 

The Studies 

Study 1. Both Rs experiments were conducted in California's lower Sacramento 
Valley, and focused on a 90,000-ha area within the Sutter-Yuba Mosquito 
Abatement District (Figure 2). In the initial experiment (Washino et al., 1987; 1988; 
Wood et al., 1991a), which took place in 1985,46 irrigated rice fields were selected 
for mosquito larval sampling. Fields were chosen from a pool of candidate fields 
for which'access permission from landowners had been granted. Fields were then 
selected so that travel times could be minimized between sampling sites while still 
capturing differences in cultivation practices throughout the area. The location of 





the fields to be sampled were plotted on 1:24,000-scale land-use maps produced by 
the California Department of Water Resources (DWR). Larval production in the 
lower Sacramento Valley usually begins in early July, and peaks in August; 
therefore, larval sampling was conducted at biweekly intervals between July and 
late August. The sampling protocol consisted of summing the number of An. 
freeborni larvae collected using 30 dips of a 500-ml dipping cup. Due to limited 
access allowed by land owners, these dips were taken randomly from a 2000-m2 
area along the edge of each rice field. 

The remotely sensed data used in the experiment were acquired from both 
airborne and satellite platforms. Digital airborne Thematic Mapper Simulator 
(TMS) dat'a, which "simulated" data from the Landsat Thematic Mapper (TM) 
instrument, were acquired throughout the growing season using a Daedalus 
multispectral scanner onboard NASA's ER-2 aircraft. This scanner recorded data 
in 12 wavebands, of which seven were identical to those of the Landsat TM sensor. 
Each picture element, or pixel, of data represented the spectral reflectance from a 
28x28-m area on the ground. The first acquisition was on 11 June, and flights were 
conducted biweekly, coincident with larval sampling, until 16 October. Of the 
flights, seven were selected based on data quality: 11 June, 2 July, 23 July, 2 
August, 27 August, 17 September, and 16 October. The TM-equivalent wavebands 
(with the exception of TMS-5 [the first mid-infrared channel] and TMS-6 [the 
thermal channel]) were extracted for each date. Data from bands 5 and 6 were 
omitted from further analysis due to poor data consistency from date to date. The 
five extracted bands were: TMS-1 (0.45-0.52 pm, blue), TMS-2 (0.52-0.60 pm, 
green), TMS-3 (0.63-0.69 pm, red), TMS-4 (0.76-0.90 pm, near-infrared), and TMS-7 
(2.08-2.35 pm (second mid-infrared). 

Figure 3 shows the position of the five extracted TMS bands with respect to a 
typical vegetation spectral curve for a green leaf. Within each bandwidth, all 
reflected energy was captured and averaged into a single digital number (DN), 
representing values between 0 and 255 (i.e., 8-bit data). Therefore, every 28x28-m 
pixel in an image contained five DNs, representing the simultaneous reflectance of 
that pixel in the blue, green, red, near-, and mid-infrared portions of the spectrum. 
Prior to the analysis, the spectral data were corrected fer sun angle effects and each 
DN was converted to percent reflectance so that data acquired on different dates 
could be directly compared. Finally, mean reflectance values were extracted for 
each of the five wavebands using a 1x2-pixel polygon, which corresponded to the 
location of the sample plot within each rice field. 

The larval sampling data collected throughout the season were used to estimate 
An.freeborni production for each field. Of the 46 fields sampled, seven accounted 
for over 50 percent of the seasonal production, and 24 fields produced over 90 
percent. The seasonal production data were then used to divide the 46 fields into a 
"high" and a "low" larval-producing group. When these groups were plotted on 
the DWR land-use maps, it was revealed that the high larval-producing fields were 
clustered in a portion of the study area that contained a variety of land uses, 
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particularly livestock pastures. Using the DWR maps, it was determined that over 
70 percent of the high fields were within 1.5 km of a livestock pasture, where adult 
An. freeborni could potentially find bloodmeal sources. Conversely, the majority of 
the low larval-producing fields were in areas devoted almost exclusively to rice, 
and were more than 1.5 km from the closest pasture. 

To assess the utility of the TMS data for distinguishing between the high and low 
larval-producing fields, two statistical analyses were conducted. In one analysis, 
the TMS data were used to calculate a greenness value for each field. This was 
done using a variation of the greenness ratio discussed earlier. The greenness 
index, called the normalized difference vegetation index (NDVI), was calculated 
using the following formula: 

The NDVI calculation was performed pixel-by-pixel on each of the seven dates, 
resulting in seven greenness values per pixel. The seven NDVI values for each 
1x2-pixel site were averaged by group (high or low) and plotted by date in order to 
track the changes in greenness within a site throughout the sampling season. 
Although there was some spectral overlap between the high and low groups, 61.9 
percent of the high larval-producing fields and 80.0 percent of the low-producing 
fields were spectrally separable on 11 June (Figure 4). By 2 July, when all rice 
fields were approaching full canopy development, the spectral overlap between 
high and low larval-producing fields had increased so that only 56.3 percent of the 
high fields and 20.0 percent of the low fields were separable. After 2 July, all rice 
fields were spectrally similar. This analysis indicated that NDVI values could be 
used to distinguish between high and low groups only early in the season, when 
rice fields were developing tillers and had yet to develop full canopies. This 
maximum difference was in June, nearly two months prior to the peak anopheline 
larval production. 

A second statistical analysis was conducted in which the raw data (Le., not the 
derived NDVI values) from the five TMS bands were used in a discriminant 
analysis (Davis, 1973; Swain and Davis, 1978). This procedure finds a linear 
combination of independent input variables that maximizes the difference between 
two previously defined groups. The resulting transformation is then used to 
separate the two groups and to determine how well the variables could identify 
group category for the observations. The five reflectance values, one for each of 
the five TMS wavebands, were used as the independent input variables to predict 
whether a plot belonged in the high or low larval-producing group; this was 
calculated for each of the seven dates. The results of the discriminant analysis 
showed that the TMS data could be used to distinguish between the high and low 
fields on both the 11 June and 2 July dates with greater than 75.0 percent accuracy, 
and that accuracies declined on the remaining dates. This result supports the 
findings of the NDVI analysis described above, in which NDVI values could 
separate high and low larval-producing fields with 80.0 percent accuracy. 
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Study 2. The outcome of the 1985 experiment suggested that rice fields that 
developed vegetative canopies earlier in the growing season, and that were located 
near livestock pastures, produced higher numbers of An. fieeborni larvae than other 
rice fields. To test this hypothesis, another experiment was designed and 
conducted in the Sutter-Yuba Mosquito Abatement District in 1987 (Wood et al., 
1991b; 1992). The objectives of the new experiment were to (1) compare early- 
season spectral differences in canopy development of high and low larval- 
producing rice fields, (2) further explore the relationship between larval 
production in rice fields and the distance to a livestock pasture, and (3) determine 
if integrating the spectral and spatial (distance to pasture) measures could enhance 
the separation between high and low larval-producing fields. Additional analyses 
were later conducted to investigate how mosquito production and land cover 
surrounding a rice field were related. Results of this landscape analysis will also 
be reported. 

A total of 104 irrigated rice fields were selected for intensive field sampling and 
spectral analysis. As in the earlier experiment, field selection was based on access 
(i.e., permission given by farmers to enter fields), and designed to minimize travel 
time between sites while maintaining variation in cultivation practices. 
Rectangular sampling plots, measuring approximately 2000 m2, were established 
in each of the fields. Larval sampling was conducted on a weekly basis beginning 
on 29 June and continuing through to 3 September (i.e., 10 weeks). An.freeborni 
larvae abundance was assessed using 90 dips per field using a 500-ml dipping cup. 
Field crews also estimated percent canopy coverage within the sampling plots on a 
weekly basis, coincident with larval dipping, for the period between 18 May and 9 
July. In August, when maximum canopy development was achieved, the field 
crews collected rice plants from five 0.1-rn2 plots in each field to determine rice 
tiller density and green-leaf area. 

Several types of remotely sensed data were acquired over the study area during 
the experiment. These included airborne TMS data (described above), Landsat TM 
data, and airborne color-infrared photography. Table 1 lists the RS data 
acquisitions by date and sensor type. The spectral analyses were conducted on the 
same five TM or TM-equivalent bands used in the first experiment. The data were 
preprocessed prior to statistical analysis; this involved correcting the data for sun 
angle differences, and then converting the DNs to percent reflectance so that data 
from different sensors and dates could be directly compared. Following this 
correction, all data were geo-registered to a Universal Transverse Mercator (UTM) 
map projection so that the same pixels could be located on all dates. Once the data 
were registered, reflectances from each of the five channels were extracted from a 
1x2-pixel area corresponding to the larval sampling locations in each field; this 
procedure was repeated for all 10 dates. 

A digital land-use map was created from existing 1:24,000-scale DWR land-use 
maps. Because these DWR maps had been generated in 1984, the color-infrared 
photography (flown in May by NASA aircraft at a scale of 1:48,000) was used to 
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Table 1. Digital remote sensing data acquired over the study area in 1987. NS-001 
and Daedalus are two types of airborne Thematic Mapper Simulator (TMS) data, 
designed to simulate Landsat Thematic Mapper (TM) data. Asterisks indicate the 
dates used in the spectral analyses. 

Date Sensor 

20 May NS-001 TMS 
27 May* Landsat-5 TM 
19 June* Daedalus TMS 
28 June* Landsat-5 TM 
14 July Landsat-5 TM 
28 July Daedalus TMS 
6 August Daedalus TMS 



update the map. The location of the 104 rice fields were then plotted on the 
revised land-use map, enabling analysts to calculate distances between each rice 
field and the nearest livestock pasture (D). To calculate D, the minimum distance 
from the center of each of the 104 fields to the nearest livestock was measured, in 
kilometers, using the land-use map and geographic information system (GIS) 
functions. Two distance intervals were established, and the number of high and 
low larval-producing fields occurring within both intervals calculated. These 
intervals were 0-3 km and >3 km. The 3-km threshold was based on Bailey and 
Baerg (1967), whose work suggested that there is little dispersal of An.freeborni 
adults beyond the primary breeding areas during the summer months, even 
though tl& species' flight habits vary considerable throughout the. year. When 
ranked in ascending order, there was a rapid decrease in the number of high 
larval-producing fields occurring beyond 3.0 km. 

The seasonal larval production for each of the 104 fields was calculated by 
summing the number of An.freeborni larvae collected in each plot over the 10-week 
sampling period. The fields were then ranked in ascending order by larval count, 
and divided into a high or low group using 0.1 larva/dip as the threshold; this 
threshold was established by California mosquito abatement districts to 
distinguish high larval-producing fields and directing control measures (Figure 5). 
Using this threshold, it was found that approximately half of the 104 fields 
exceeded this value; therefore, for the analysis, fields were divided into two 
groups: 52 "high" and 52 "low" larval-producing fields. The larval density of each 
group was compared with measures of rice-tiller density, green-leaf area, and 
percent cover in order to determine if these field-measured parameters correlated 
with seasonal larval production. The field data were also used in the following 
statistical analyses to investigate the relationship between the vegetation 
measurements and the spectral data. 

Analysis of the dipping data showed that seasonal larval production was 
dominated by only a small number of fields. Of the 104 fields sampled, 16 fields 
accounted for 50 percent, 36 fields accounted for 75 percent, and 52 fields 
accounted for 86 percent of the total seasonal production. This result was 
consistent with previous work by Washino (1980), as well as with the 1985 field 
data. As in the earlier experiment, the field data showed that the high-producing 
fields were grouped in areas in which livestock pastures were also found. 

Regression analysis of the vegetation and larval data indicated that rice plant tiller 
density was positively correlated with larval production at the y = 0.05 level ( r  = 
0.21) (Washino et al., 1988). The other vegetation parameters were not correlated 
with larval abundance. The diagram shown in Figure 6, based on actual field 
measurements, illustrates the relationships between larval abundance, tiller 
density, and green-leaf area. These relationships suggest that fields with higher 
plant density and green-leaf area provide more favorable habitat for larval 
production. 
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Three separate of multivariate tests were conducted using different combinations 
of the spectral data and the distance-pasture measurements to determine how well 
these variables could distinguish between high and low larval-producing groups: 
(1) discriminant analysis of high and low groups, using only the spectral 
reflectance data; (2) discriminant analysis, using both the spectral data and 
distance-to-pasture measurements; and (3) a Bayesian approach that used a priori 
probabilities based on the distance-to-pasture measures to weight the spectral 
probabilities. A preliminary analysis, using mean NDVI values derived from the 
high and low larval-producing fields, showed that vegetation green-up in 1987 
followed the same trend' seen in the 1985 experiment (i.e., that the early season 
dates provided the best opportunity for spectral separation of the high and low 
groups). Therefore, the discriminant and Bayesian analyses were performed only 
on the three early-season dates: 27 May, 19 June, and 28 June. 

Discriminant analysis using spectral diita. This procedure was used in the 1985 
experiment to determine which TM-equivalent bands, if any, could be used in a 
d i s c r i k n t  function to predict group membership (ie., high versus low larval- 
producing). For each 1x2-pixel plot, the five DN values, representing the 
reflectances in the five TM wavebands for a field, were used as the independent 
input variables (RS) in a discriminant analysis to predict membership in the high 
(El) or low ( L )  larval-producing group. The output score, which was the likelihood 
of a field belonging to either the high (P[H I R S ] )  or the low ( P [ L  I RS])  group was 
then used to categorize all 104 fields. 

Discriminant analysis using spectral and distance data. For this analysis, the 
distance between each of the rice fields and the nearest livestock pasture (D) was 
used as an independent input variable, along with RS. The six input variables (five 
RS measurements plus D) determined the discriminant score, which was then used 
to categorize all 104 fields into either a high or low category. 

Bayesian analysis using both spectral and distance measures. The third analysis 
used a Bayesian approach to distinguish high and low fields. Bayesian methods 
have been used by other investigators for combining data from diverse sources 
(e.g., spectral reflectance and topography) (Swain et d., 1985; Strahler, 1980; 
Hutchinson, 1982). In this approach, prior probabilities based on the two distance 
measures '(P I D) were used to weight probabilities based on Rs data. Inside each 
distance interval, the conditional probability of a field belonging to either the high 
(E!') or the low (L)  group was estimated by dividing the probability of a field being 
high or low within a given interval by the probability of a field being within that 
distance interval. Table 2 shows the conditional probabilities of fields being high 
(P[H I D]) or low ( P [ L  I D]) within each distance interval. 

Three separate steps were taken in the Bayesian approach. The probability of a 
field being in the high or low group was estimated first based on RS; this resulted 
in two sets of probabilities: P(H I RS) and P(L I RS). Next, the probabilities from the 
first step were multiplied by the probabilities of each field being in the high or low 



Table 2. Distance-to-pasture measurements (D) and conditional probabilities (P)  of 
fields within each range belonging to the high [HI or low [L] larval-producing 
group based on distance alone. 

Distance (km) 

Grow 0.0-2.9 3.0 + 

NO. High 44 9 
No. Low 20 31 

Probability 
P" 0.69 0.20 m1 0.31 0.80 

, 



group based on D (Le., P[H I D]; P[L I 231). Finally, each field was assigned to the 
group that had the highest Bayesian score (BAYES). 

Accuracy assessment. The classification accuracies for predicting the high group 
using the spectral data (RS)  alone in a discriminant analysis were 63,69, and 69 
percent on 27 May, 19 June, and 28 June, respectively. Accuracies for the low 
group were 67,56, and 65 percent, on the same dates. (All results are presented in 
Table 3.) By adding the sixth variable (D) in the second discriminant analysis 
method, the jackknifed classification accuracies for the high group rose to 75/90, 
and 75 percent on 27 May, 19 June, and 28 June, respectively. Accuracies for the 
low group were roughly the same as those from the analysis using only RS: 64,60, 
and 67 percent. Finally, the Bayesian approach for the three early season dates 
resulted in classification accuracies of 81,85, and 75 percent for the high fields, and 
67/67, and 69 percent for the low fields. 

Landscape composif ion analysis. The analyses involving D, the distance-to-pasture 
variable, indicated that the presence of land cover types other than rice influenced 
larval production. Therefore, a n  additional analysis, using geographic information 
system (GIs) techniques, was conducted to quantify, for each of the 104 rice fields, 
surrounding land uses, and then compare high and low larval-producing fields. 
The first step was to generate polygons of varying radii surrounding each rice 
field. These polygons, called "buffers," were created for distances of 1.0,1.5,2.0, 
2.5, and 3.0 km from the edge of each field. These buffers were then used to 
summarize land cover information within that distance radius around each field. 
To do this, the buffers were overlain on the DWR land use map; then, for each rice 
field, the proportion of each land use type within each of the five distances was 
calculated. The land use categories included rice, field crops, occupied pasture 
(ie., livestock present), unoccupied pasture, native vegetation, urban areas, and 
water (Figure 7). 

Visual inspection showed that high larval-producing fields had greater 
heterogeneity in terms of surrounding land use; this relationship was particularly 
evident at the larger buffer distances. Low larval-producing rice fields tended to 
be surrounded by more rice fields and field crops. Correlation matrices of the land 
use proportions and the larval abundance data were generated to quantify these 
associations. High positive correlations with larval production were identified for 
pasture, orchard, and native vegetation (Figure 8). These three landscape elements 
provide opportunities for the mosquito to acquire a bloodmeal (such as from cows 
in pastures and small mammals in native vegetation), or to find a resting site (in 
shady orchards or native vegetation). The strongest associations were shown for 
the 2.5-km buffer. The area within this distance buffer incorporated a diversity of 
important cover types that were also within the flight range of An.fieeborni. As 
expected, negative correlations were seen between larval abundance and the 
proportion of rice crops (i.e., the more rice and field crops surrounding a rice field, 
the fewer opportunities for bloodmeals and resting sites, and the less likely that the 
rice field will be used for egg-laying). 



Table 3. Percentage correct identification by high and low group, based on discriminant 
analysis using only spectral data (RS), the spectral and distance measures (RSD), and 
using the Bayesian method (BAYES) for 27 May, 19 June, and 28 June. 

27 May 19 June 28 June 

Group RS E D  BAYES RS RSD BAYES RS RSD BAYES 

High 
Low 

63 75 81 
67 64 67 

69 90 85 
56 60 67 

69 75 75 
65 67 69 
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Discussion 

The primary objective of both studies was to determine if RS and GIS techniques 
could be used to distinguish between high and low larval-producing rice fields in 
California. Results of the first study suggested that early-season green-up and 
proximity to livestock pastures were positively correlated with high larval 
abundance (Washino ef al., 1987; 1988; Wood ef al., 1991a). Based on the early- 
season spectral differences between high and low larval-producing fields, it 
appeared that canopy development and tillering influenced mosquito habitat 
quality. At that time, rice fields consisted of a mixture of plants and water, a 
combination that allowed Amfreeborni females to lay eggs in partial sunlight, 
protected from both predators and wind. This established a population earlier in 
the season than in other, 'less-green'' fields where tillering and plant emergence 
was too minimal for ovipositioning. The study also indicated the importance of 
the distance that a mosquito would have to fly in order to take a bloodmeal prior 
to ovipositing. These associations were fully explored in an expanded study two 
years later. The second study confirmed the positive relationship between early 
season canopy development and larval abundance, and also demonstrated the 
relationship between abundance and distance-to-pasture. Figure 9 illustrates the 
association between greenness (as measured using NDVI), distance-to-pasture, 
and abundance. The second study also indicated the siginificance of the landscape 
context ofrice fields for larval production. Fields that included opportunities for 
feeding and resting within the flight range of the mosquito had higher abundances 
than did fields that were in a homogeneous rice area. 

Conclusion 

Irrigated rice cultivation throughout the world constitutes one of the most 
important sources of anopheline larval habitats. In malaria-endemic areas of Asia, 
Africa, and the Americas, over 75 million hectares are devoted to irrigated rice. 
The spatial and temporal relationships between irrigated rice cultivation and An. 
fieeborni population dynamics in California allowed investigators to use RS to 
characterize this association. The results indicated that RS data can be used to 
characterize early-season rice canopy development, which is a function of tillering 
and green-leaf area; these parameters can influence the quality of anopheline larval 
habitat. Combining the RS (spectral) and distance-to-pasture (spatial) information 
can enhance the identification of high larval-producing fields for use in directing 
early-season larval control measures. The methods described in this chapter could 
also be pertinent in other areas where irrigated rice is grown, with modifications 
for local differences in rice cultivars, cultivation practices, bloodmeal preferences, 
and larval habitat requirements. 

The studies presented in this chapter used Landsat TM data or airborne TMS data. 
However, there are currently several RS sensors whose data could also be used for 
monitoring rice-field greenness on a local scale; these, and other sensors due to be 
launched onboard satellites in the next few years, are listed in Table 4. These 
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Low distance t o  pasture 

I 

E 



MISSION 

Landsat 5 
~~ -~ 

IRS-1A I India I 1988- I LISS 11 I 36 148/22 

COUNTRY YEAR' INSTRUMENT RESOLUTION SWATH fkm) */ 
(m) REPEAT (day)3 

USA 1984- TM 30 185/16 

- -  ~ 

SPOT-2 I France I 1990- I 2xHRV. I 20 1- 60/1-26 

JERS-1 
IRS P2 
IRS-1c 

Japan 1992- OPS 18 75/44 
India 1994- LISS II 36 132/24 
India 1995- LISS m 23 142-148 /24 

Priroda/Mir 
IRS-1D 
SPOT-4 

Almaz-lb 
Ikonos-1 

- - 

CIS4 1996- MOMS-2P 6 44-88/14 
India 1997- LISS m 23 142-148/24 

France 1998- 2xHRVI.R 10,20 60/3 
CIS (1998) MSU-E2 10 2x24/3 
sIE5 (1998) M s  4 11x100/ 11 

ALOS I Japan I (2002) I AVNIR-2 I 10-15 I 35,70/2,45 

Ikonos-2 
EOS-AM.1 
Landsat 7 

OrbView-3 
QuickBird 
ARIES-1 

OrbView-4 

- ~~ - 

SIE (1998) Ms 4 11x100/ 11 
USA/Japan (1999) ASTER 20 60/16 

USA (1999) ETM+ 30 185/16 
Orbimage (1999) Ms 4 8/3 

Australia (2000) ARIES 30 15/7 
Orbimage (2000) Ms 4 5-8/3 

USA (1999) QuickBird 3 22/1-4 

1 Years followed by a hyphen indicate that the instruments are still acquiring data at the time of this 
writing parenthetical dates are proposed launches 

Area covered by the sensor 

Commonwealth of Independent States (former Soviet Union) 
3 Days for satellite to pass over same place on the ground 

5 SpaceImaging EOSAT, Corp. 

SPOT-5a 
SPOT-5b 

France. (2002) 3xHRG 10 60/3 
France (2004) 3xHRG 10 60/3 



, 

sensors are all capable of detecting spectral reflectance in the red and near-infrared 
portions of the spectrum, enabling users to generate NDVI values, and have spatial 
resolutions (i.e., less than 40x40 m) sufficiently fine to monitor rice field greenness. 

The RS and GIS technologies have since been used to investigate the distribution of 
other disease vectors. Some of the studies supported by NASA include: An. 
ulbimanus, the vector of malaria in Chiapas, Mexico (Beck et ul., 1994; 1997); Ixodes 
scupuluris, the vector of Lyme disease in the United States (Dister et nl., 1993; 1997); 
and Culex pipiens, the vector of filariasis in the Nile Delta (Hassan et nl., 1998a, b). 
For a more comprehensive discussion of RS/GIS and human health, the reader is 
referred to Hay et nl., 1996; 1997. 
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